Selasa, 22 November 2011

TRIGONOMETRI

DALIL SINUS

  a   =   b   =   c  
sin
a   sin b   sin d

LUAS SEGITIGA


= b² + c² - 2 bc cos a
b
² = a² + c² - 2 ac cos b
c
² = a² + b² - 2 ab cos d

DALIL COSINUS
Luas = ½ ab sin d
= ½ ac b
= ½ bc a

Luas segitiga dengan ketiga sisinya diketahui :
                               
L  = Ö(s(s-a)(s-b)(s-c))
s  = setengah keliling segitiga
   = ½ (a+b+c)

LINGKARAN DALAM, LINGKARAN LUAR DAN LINGKARAN SINGGUNG SUATU SEGITIGA


1. Lingkaran Dalam Segitiga
Lingkaran L1 menyinggung sisi-sisi segitiga ABC, titik pusat lingkaran dalam didapat dari perpotongan garis bagi-garis bagi sudut segitiga ABC.

Hubungan :
                                      
rd =
Ö[(s-a)(s-b)(s-c)]/s
2. Lingkaran Luar Segitiga
Lingkaran L2 melalui titik-titik sudut segitiga ABC, titik pusat lingkaran luar didapat dari perpotongan garis-garis berat segitiga ABC.

Hubungan :
rL =    a     =    b    =     c    
        sin a      sin b     sin d

rL =                abc              
                         4 Ö[s(s-a)(s-b)(s-c)]

3. Lingkaran Singgung Segitiga
Lingkaran L3 menyinggung sisi BC, menyinggung garis BP (BP adalah perpanjangan sisi AB) dan menyinggung garis CQ (CQ adalah perpanjangan sisi AC). Titik pusat lingkaran berada diluar segitiga ABC. Titik pusat lingkaran singgung didapat dari perpotongan garis bagi dalam sudut A dan garis bagi luar sudut B dan sudut C. Terdapat tiga lingkaran singgung yaitu: menyinggung sisi AB, menyinggung sisi BC dan menyinggung sisi AC.

Hubungan :
rsa = jari - jari lingkaran singgung sisi BC
                           
=
Ö s(s-b)(s-c)
                   
(s-a)
rsb = jari - jari lingkaran singgung sisi AC
                           
=
Ö s(s-a)(s-c)
                   
(s-b)
rsc = jari - jari lingkaran singgung sisi AB
                           
=
Ö s(s-a)(s-b)
                   
(s-c)
PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b)  = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b )   = tg a + tg b
                 1 - tg2a


SELISIH DUA SUDUT
(a - b)

sin(a - b)  = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b )   = tg a - tg b
                 1 + tg2a


SUDUT RANGKAP

sin 2
a  = 2 sin a cos a
cos 2
a = cos2a - sin2 a
= 2 cos2
a - 1
= 1 - 2 sin2
a
tg 2
a  =  2 tg 2a 
            1 - tg2
a
sin
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a  = ½ (1 - cos 2a)

Secara umum :


sin n
a  = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin2 ½n
a
tg n
a =   2 tg ½na  
           1 - tg2 ½n
a

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN
® PERKALIAN

sin
a + sin b   = 2 sin a + b    cos a - b
                                2              2
sin
a - sin b   = 2 cos a + b    sin a - b
                                2             2
cos
a + cos b = 2 cos a + b    cos a - b
                                 2              2
cos
a + cos b = - 2 sin a + b   sin a - b
                                  2             2

BENTUK PERKALIAN
® PENJUMLAHAN

2 sin
a cos b = sin (a + b) + sin (a - b)
2 cos
a sin b = sin (a + b) - sin (a - b)
2 cos
a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x -
a)

a cos x + b sin x = K cos (x-
a)
dengan :                     
             K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut

I
II
III
IV
a
+
-
-
+
b
+
+
-
-
keterangan :
a = koefisien cos x
b = koefisien sin x

PERSAMAAN
I. sin x = sin
a Þ x1 = a + n.360°
                         x2 = (180° -
a) + n.360°



    cos x = cos
a Þ x = ± a + n.360°


tg x = tg a
Þ x = a + n.180°    (n = bilangan bulat)

II. a cos x + b sin x = c
     a cos x + b sin x = C
            K cos (x-
a) = C
               cos (x-
a) = C/K
     syarat persamaan ini dapat diselesaikan
     -1
£ C/K £ 1 atau K² ³ (bila K dalam bentuk akar)

misalkan C/K = cos
b
  cos (x -
a) = cos b
        (x -
a) = ± b + n.360° ® x = (a ± b) + n.360°

 

Tidak ada komentar:

Posting Komentar